You need to use the following substitution `sqrt x = u` , such that:
`sqrt x = u=> (dx)/(2sqrt x) = du => (dx)/(sqrt x) = 2du `
`int (sin(sqrt x) dx)/(sqrt x) = 2*int sin u du`
`2*int sin u du = -2cos u + c`
Replacing back `sqrt x ` for u yields:
`int (sin(sqrt x) dx)/(sqrt x) =-2cos (sqrt x) + c`
Hence, evaluating the indefinite integral, yields `int (sin(sqrt x) dx)/(sqrt x) =-2cos (sqrt x) + c.`
No comments:
Post a Comment