Sunday, November 2, 2008

`5 + 2i` Write the trigonometric form of the number.

`5+2i`


Take note that the trigonometric form of a complex number z=x+yi is


`z=r(cos theta + isin theta)`


where 


`r=sqrt (x^2+y^2)`


and


`theta = tan^(-1) y/x`


Applying these formula,  the values of r and theta of `z=5+2i` are:


`r=sqrt(5^2+2^2)=sqrt(25+4)=sqrt29`


`theta = tan^(-1) 2/5 = 21.8^o`


Plugging them to the trigonometric form, it result to:


`z=sqrt29 (cos 21.8^o + isin21.8^o)`



Thus, the trigonometric form of  `5+2i`  is  `sqrt29(cos21.8^o + isin21.8^o)` .

No comments:

Post a Comment