Sunday, December 7, 2008

`(x^2 + 2x + 8)/(x^2 + 4)^2` Write the partial fraction decomposition of the rational expression. Check your result algebraically.

`(x^2+2x+8)/[(x^2+4)^2]=(x^2+2x+8)/[(x^2+4)(x^2+4)]`


`(x^2+2x+8)/[(x^2+4)^2]=(Ax+B)/(x^2+4)+(Cx+D)/[(x^2+4)^2]`


Multiply through by the LCD `(x^2+4)^2.`


`x^2+2x+8=(Ax+B)(x^2+4)+(Cx+D)`


`x^2+2x+8=Ax^3+Bx^2+4Ax+4B+Cx+D`


`x^2+2x+8=Ax^3+Bx^2+(4A+C)x+(4B+D)`



Equate coefficients of like terms. Then solve for A, B, C, D.


`0=A`


`1=B`



`2=4A+C`


`2=4(0)+C`


`2=C`



`8=4B+D`


`8=4(1)+D`


`4=D`



`A=0, B=1, C=2, D=4`



`(x^2+2x+8)/[(x^2+4)^2]=(0x+1)/(x^2+4)+(2x+4)/[(x^2+4)^2]=1/(x^2+4)+(2x+4)/[(x^2+4)^2]`

No comments:

Post a Comment