You need to solve the integral `int_0^(1/2) (x) cos (pi*x) dx` , hence, you need to use substitution `pi*x = t => pi*dx = dt => dx = (dt)/(pi)`
`int x*cos (pi*x) dx = 1/(pi^2) int t*cos t`
You need to use the integration by parts for `int t*cos t` such that:
`int udv = uv - int vdu`
`u = t => du = dt`
`dv =cos t=>v =sin t`
`int t*cos t = t*sin t- int sin t dt`
`1/(pi^2) int t*cos t = 1/(pi^2)(t*sin t +cos t) + c`
Replacing back the variable yields:
`int x*cos (pi*x) dx = 1/(pi^2)(pi*x*sin(pi*x) +cos (pi*x)) + c`
Using the fundamental theorem of calculus, yields:
`int_0^(1/2) (x)cos (pi*x) dx = 1/(pi^2)(pi*(1/2)*sin(pi/2) +cos (pi/2) - 0*sin 0 - cos 0)`
`int_0^(1/2) (x)cos (pi*x) dx = 1/(pi^2)(pi/2 - 1)`
Hence, evaluating the integral, using integration by parts, yields `int_0^(1/2) (x)cos (pi*x) dx = 1/(pi^2)(pi/2 - 1).`
No comments:
Post a Comment