Friday, February 6, 2009

`int_0^(1/2) x cos(pi x) dx` Evaluate the integral

You need to solve the integral `int_0^(1/2) (x) cos (pi*x) dx` , hence, you need to use substitution `pi*x = t => pi*dx = dt => dx = (dt)/(pi)`


`int x*cos (pi*x) dx = 1/(pi^2) int t*cos t`


You need to use the integration by parts for `int t*cos t`   such that:


`int udv = uv - int vdu`


`u = t => du = dt`


`dv =cos t=>v =sin t`


`int t*cos t = t*sin t- int sin t dt`


`1/(pi^2) int t*cos t = 1/(pi^2)(t*sin t +cos t) + c`


Replacing back the variable yields:


`int x*cos (pi*x) dx = 1/(pi^2)(pi*x*sin(pi*x) +cos (pi*x)) + c`


Using the fundamental theorem of calculus, yields:


`int_0^(1/2) (x)cos (pi*x) dx = 1/(pi^2)(pi*(1/2)*sin(pi/2) +cos (pi/2) - 0*sin 0 - cos 0)`


`int_0^(1/2) (x)cos (pi*x) dx = 1/(pi^2)(pi/2 - 1)`


Hence, evaluating the integral, using  integration by parts, yields `int_0^(1/2) (x)cos (pi*x) dx = 1/(pi^2)(pi/2 - 1).`

No comments:

Post a Comment