You need to use the substitution `sin x = t,` such that:
`sin x = t => cos x dx = dt`
Replacing the variable, yields:
`int cos x*ln(sin x) dx = int ln t dt`
You need to use the integration by parts such that:
`int udv = uv - int vdu`
`u = ln t => du = (dt)/t`
`dv = 1 => v = t`
`int ln t dt = t*ln t - int t*(dt)/t`
`int ln t dt = t*ln t - int dt`
`int ln t dt = t*ln t - t + C`
Replacing back the variable, yields:
`int cos x*ln(sin x) dx = sin x*ln (sin x) -sin x+ C`
Hence, evaluating the integral, using substitution, then integration by parts, yields `int cos x*ln(sin x) dx = sin x*(ln (sin x) -1)+ C.`
No comments:
Post a Comment