Sunday, May 17, 2009

`int cos(x) ln(sin(x)) dx` Evaluate the integral

You need to use the substitution `sin x = t,` such that:


`sin x = t => cos x dx = dt`


Replacing the variable, yields:


`int cos x*ln(sin x) dx = int ln t dt`


You need to use the integration by parts such that:


`int udv = uv - int vdu`


`u = ln t => du = (dt)/t`


`dv = 1 => v = t`


`int ln t dt = t*ln t - int t*(dt)/t`


`int ln t dt = t*ln t - int dt`


`int ln t dt = t*ln t - t + C`


Replacing back the variable, yields:


`int cos x*ln(sin x) dx = sin x*ln (sin x) -sin x+ C`


Hence, evaluating the integral, using substitution, then integration by parts, yields `int cos x*ln(sin x) dx = sin x*(ln (sin x) -1)+ C.`

No comments:

Post a Comment