This is integration by parts
rewrite it as:
`int [x e^(2x)] {dx /[(2x + 1)^2]} `
let:
`[x e^(2x)] = u → {e^(2x) + x [2e^(2x)]} dx = du →`
`{e^(2x) + 2x e^(2x)} dx = du → `
factoring out `e^(2x)`
`[e^(2x)](1 + 2x) dx = du `
`dx /[(2x + 1)^2] = dv → `
dividing and multiplying by 2
`(1/2) {2dx /[(2x + 1)^2]} = dv → `
`(1/2) {d(2x + 1) /[(2x + 1)^2]} = dv → `
`(1/2) [(2x + 1)^(-2)] d(2x + 1) = dv → `
`(1/2) [(2x + 1)^(-2+1)]/(-2+1) = v → `
`(1/2) [(2x + 1)^(-1)]/(-1) = v → `
`-1 /[2(2x + 1)] = v `
thus, integrating by parts, you get:
`int u dv = u v - int v du → `
`int [x e^(2x)] {dx /[(2x + 1)^2]} = `
`[x e^(2x)]{-1 /[2(2x + 1)]} - ∫ {-1 /[2(2x + 1)]} [e^(2x)](1 + 2x) dx = `
`(-1/2){[x e^(2x)] /(2x + 1)} + ∫ {[e^(2x)](1 + 2x) /[2(2x + 1)]} dx = `
canceling `(2x + 1)` ,
`(-1/2){[x e^(2x)] /(2x + 1)} + (1/2) ∫ e^(2x) dx = `
`(-1/2){[x e^(2x)] /(2x + 1)} + (1/2) [(1/2)e^(2x)] + C = `
factoring out `[(1/2)e^(2x)]` ,
`[(1/2)e^(2x)] {- [x/(2x + 1)] + (1/2)} + C = `
`[(1/2)e^(2x)] {(- 2x + 2x + 1) /[2(2x + 1)]} + C = `
`[(1/2)e^(2x)] {1 /[2(2x + 1)]} + C `
Thus
`int [x e^(2x)] / [(2x + 1)^2] dx = (1/4) {[e^(2x)] /(2x + 1)} + C`
No comments:
Post a Comment