Saturday, December 26, 2009

`int_1^2 x sqrt(x - 1) dx` Evaluate the definite integral.

You need to use the following substitution  `x-1=u` , such that:


`x-1=u=>(dx)= du `


`int_1^2 x*sqrt(x-1)dx = int_(u_1)^(u_2) (u+1)*u^(1/2) du`


`int_(u_1)^(u_2) (u+1)*u^(1/2) du = int_(u_1)^(u_2) u^(3/2) du + int_(u_1)^(u_2) u^(1/2) du`


`int_(u_1)^(u_2) (u+1)*u^(1/2) du = ((2/5)*u^(5/2) + (2/3)*u^(3/2))|_(u_1)^(u_2)`


Replacing back  x-1 for u yields:


`int_1^2 x*sqrt(x-1)dx = ((2/5)*(x-1)^(5/2) + (2/3)*(x-1)^(3/2))|_(1)^(2)`


Using Leibniz-Newton theorem yields:


`int_1^2 x*sqrt(x-1)dx = ((2/5)*(2-1)^(5/2) + (2/3)*(2-1)^(3/2))`


`int_1^2 x*sqrt(x-1)dx =2/5 + 2/3`


`int_1^2 x*sqrt(x-1)dx =(6 + 10)/15`


`int_1^2 x*sqrt(x-1)dx =16/15`


Hence, evaluating the definite integral, yields `int_1^2 x*sqrt(x-1)dx =16/15.`

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...