You need to evaluate the indefinite integral `int x^2*sqrt(2+x) dx` using the following substitution `2+x=u` , such that:
`2+x=u=>dx = du `
`x = u-2`
`int (u-2)*sqrt(u) dx= int u^(3/2)du -2int u^(1/2) du`
`int (u-2)*sqrt(u) dx= (2/5)u^(5/2) - (4/3)u^(3/2) + c`
Replacing back `2+x ` for u yields:
`int x^2*sqrt(2+x) dx = (2/5)(2+x)^(5/2) - (4/3)(2+x)^(3/2) + c`
Hence, evaluating the indefinite integral, yields `int x^2*sqrt(2+x) dx = (2/5)(2+x)^(5/2) - (4/3)(2+x)^(3/2) + c`
No comments:
Post a Comment