You need to use the following substitution `ln x = u` , such that:
`ln x = u=> (dx)/x = du `
`int ((ln^2 x)dx)/x = int u^2 du`
Using the formula `int u^n du = (u^(n+1))/(n+1) + c ` yields
`int u^2 du = (u^3)/3 + c`
Replacing back ` ln x` for `u ` yields:
`int ((ln^2 x)dx)/x = ((ln x)^3)/3 + c`
Hence, evaluating the indefinite integral, yields `int ((ln^2 x)dx)/x = ((ln x)^3)/3 + c.`
No comments:
Post a Comment