Wednesday, September 19, 2012

`int_sqrt(pi/2)^sqrt(pi) theta^3 cos(theta^2) d theta` First make a substitution and then use integration by parts to evaluate the integral

You need to use the substitution `theta^2= t` , such that:


`theta^2 = t => 2theta d theta= dt => theta d theta= (dt)/2`


Replacing the variable, yields:


`int_(sqrt(pi/2))^(sqrt pi) theta^3(cos(theta^2)d theta = int_(t_1)^(t_2) t*cos t*(dt)/2`


You need to use the integration by parts such that:


`int udv = uv - int vdu`


`u = t => du = dt`


`dv = cos t => v = sin t`


`int t*cos t = t*sin t - int sin t dt`


`int t*cos t = t*sin t + cos t + C`


Replacing back the variable, yields:


`int_(sqrt(pi/2))^(sqrt pi) theta^3(cos(theta^2)d theta = (theta^2*sin (theta^2) + cos (theta^2))|_(sqrt(pi/2))^(sqrt pi)`


Using the fundamental theorem of integration, yields:


`int_(sqrt(pi/2))^(sqrt pi) theta^3(cos(theta^2)d theta = (pi*sin (pi) + cos (pi) - (pi/2)*sin(pi/2) - cos(pi/2))`


`int_(sqrt(pi/2))^(sqrt pi) theta^3(cos(theta^2)d theta = -1 - pi/2`


Hence, evaluating the integral, using substitution, then integration by parts, yields `int_(sqrt(pi/2))^(sqrt pi) theta^3(cos(theta^2)d theta = (1/2)(-1 - pi/2).`

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...