You need to evaluate the indefinite integral, using the following substitution, such that:
`sin^(-1) x = t => dx/(sqrt(1 - x^2)) = dt`
Replacing t for x yields:
`int dx/((sin^(-1) x)sqrt(1 - x^2)) = int (dt)/t`
`int (dt)/t = ln|t| + c`
Replacing back` sin^(-1) x ` for t yields:
`int dx/((sin^(-1) x)sqrt(1 - x^2)) = ln|sin^(-1) x| + c`
Hence, evaluating the indefinite integral, using the substitution `sin^(-1) x = t` , yields `int dx/((sin^(-1) x)sqrt(1 - x^2)) = ln|sin^(-1) x| + c.`
No comments:
Post a Comment