Saturday, June 15, 2013

`int (dx)/(sqrt(1 - x^2)sin^(-1)(x))` Evaluate the indefinite integral.

You need to evaluate the indefinite integral, using the following substitution, such that:


`sin^(-1) x = t => dx/(sqrt(1 - x^2)) = dt`


Replacing t for x yields:


`int dx/((sin^(-1) x)sqrt(1 - x^2)) = int (dt)/t`


`int (dt)/t = ln|t| + c`


Replacing back` sin^(-1) x ` for t yields:


`int dx/((sin^(-1) x)sqrt(1 - x^2)) = ln|sin^(-1) x| + c`


Hence, evaluating the indefinite integral, using the substitution `sin^(-1) x = t` , yields `int dx/((sin^(-1) x)sqrt(1 - x^2)) = ln|sin^(-1) x| + c.`

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...