`int (ln x)^2dx`
To evaluate, apply integration by parts `int udv= uv - vdu` .
So let
`u = (lnx)^2`
and
`dv = dx`
Then, differentiate u and integrate dv.
`du = 2lnx * 1/x dx = (2lnx)/x dx`
and
`v = intdx = x`
Plug-in them to the formula. So the integral becomes:
`int (ln x)^2dx`
`= (lnx)^2 *x - int x * (2lnx)/x dx`
`= x(lnx)^2 -2int lnx dx`
To take integral of ln x, apply integration by parts again.
So let
`u_2 = ln x `
and
`dv_2 = dx`
Then, differentiate u and integrate dv.
`du_2 = 1/x dx`
and
`v_2= int dx = x`
So the integral becomes:
`=x(lnx)^2 - 2( lnx * x - int x * 1/x dx)`
`= x(lnx)^2 - 2(xlnx - int dx)`
`=x(lnx)^2 - 2(xlnx - x)`
`=x(lnx)^2 - 2xlnx + 2x`
Therefore, `int (lnx)^2dx = x(lnx)^2 - 2xlnx + 2x` .
No comments:
Post a Comment