Saturday, June 15, 2013

`int (ln x)^2 dx` Evaluate the integral

`int (ln x)^2dx`


To evaluate, apply integration by parts `int udv= uv - vdu` .


So let


`u = (lnx)^2`


and


`dv = dx`


Then, differentiate u and integrate dv.


`du = 2lnx * 1/x dx = (2lnx)/x dx`


and


`v = intdx = x`


Plug-in them to the formula. So the integral becomes:


`int (ln x)^2dx`


`= (lnx)^2 *x - int x * (2lnx)/x dx`


`= x(lnx)^2 -2int lnx dx`


To take integral of ln x, apply integration by parts again.


So let 


`u_2 = ln x `


and


`dv_2 = dx`


Then, differentiate u and integrate dv.


`du_2 = 1/x dx`


and


`v_2= int dx = x`


So the integral becomes:


`=x(lnx)^2 - 2( lnx * x - int x * 1/x dx)`


`= x(lnx)^2 - 2(xlnx - int dx)`


`=x(lnx)^2 - 2(xlnx - x)`


`=x(lnx)^2 - 2xlnx + 2x`



Therefore, `int (lnx)^2dx = x(lnx)^2 - 2xlnx + 2x` .

No comments:

Post a Comment