Wednesday, June 12, 2013

`x + 2y - 3z = -28, 4y + 2z = 0, -x + y - z = -5` Use matricies to solve the system of equations. Use Gaussian elimination with...

`x+2y-3z=-28`


`4y+2z=0`


`-x+y-z=-5`


The equations in the matrix form can be written as,


`[[1,2,-3,-28],[0,4,2,0],[-1,1,-1,-5]]`


Add Row 1 and Row 3


`[[1,2,-3,-28],[0,4,2,0],[0,3,-4,-33]]`


Multiply Row 2 by 2 and Add it to Row 3 


`[[1,2,-3,-28],[0,4,2,0],[0,11,0,-33]]`


Now the equations can be written as,


`x+2y-3z=-28`     ----- equation 1


`4y+2z=0`            ------ equation 2


`11y=-33`               ----- equation 3


From equation 3,


`y=-33/11=-3`


Substitute back y in equation 2,


`4(-3)+2z=0`


`-12+2z=0`


`2z=12`


`z=12/2=6`


substitute back y and z in equation 1,


`x+2(-3)-3(6)=-28`


`x-6-18=-28`


`x=-28+18+6`


`x=-4`


So the solutions are x=-4, y=-3, z=6

No comments:

Post a Comment