Saturday, December 14, 2013

`int_0^(1/2) cos^(-1) x dx` Evaluate the integral

`int_0^(1/2)cos^(-1)xdx`


Let's first evaluate the indefinite integral by using the method of integration by parts,


`intcos^(-1)xdx=cos^(-1)x*int1dx-int(d/dx(cos^(-1)x)int1dx)dx`


`=cos^(-1)x*x-int(-1/sqrt(1-x^2)*x)dx`


`=xcos^(-1)x+intx/sqrt(1-x^2)dx`


Now let's evaluate `intx/sqrt(1-x^2)dx` using the method of substitution,


Let's substitute `t=1-x^2`


`=>dt=-2xdx`


`intx/sqrt(1-x^2)dx=intdt/(-2sqrt(t))`


`=-1/2intdt/sqrt(t)`


`=-1/2(t^(-1/2+1)/(-1/2+1))`


`=-1/2(t^(1/2)/(1/2))`


`=-t^(1/2)`


substitute back `t=1-x^2`


`=-sqrt(1-x^2)`


`:.intcos^(-1)xdx=xcos^(-1)x-sqrt(1-x^2)+C`


Now let's evaluate the definite integral,


`int_0^(1/2)cos^(-1)x=[xcos^(-1)x-sqrt(1-x^2)]_0^(1/2)`


`=[1/2cos^(-1)1/2-sqrt(1-(1/2)^2)]-[0cos^(-1)0-sqrt(1-0^2)]` 


`=[1/2*pi/3-sqrt(1-1/4)]-[-1]`  


`=pi/6-sqrt(3)/2+1`

No comments:

Post a Comment