`int_0^(1/2)cos^(-1)xdx`
Let's first evaluate the indefinite integral by using the method of integration by parts,
`intcos^(-1)xdx=cos^(-1)x*int1dx-int(d/dx(cos^(-1)x)int1dx)dx`
`=cos^(-1)x*x-int(-1/sqrt(1-x^2)*x)dx`
`=xcos^(-1)x+intx/sqrt(1-x^2)dx`
Now let's evaluate `intx/sqrt(1-x^2)dx` using the method of substitution,
Let's substitute `t=1-x^2`
`=>dt=-2xdx`
`intx/sqrt(1-x^2)dx=intdt/(-2sqrt(t))`
`=-1/2intdt/sqrt(t)`
`=-1/2(t^(-1/2+1)/(-1/2+1))`
`=-1/2(t^(1/2)/(1/2))`
`=-t^(1/2)`
substitute back `t=1-x^2`
`=-sqrt(1-x^2)`
`:.intcos^(-1)xdx=xcos^(-1)x-sqrt(1-x^2)+C`
Now let's evaluate the definite integral,
`int_0^(1/2)cos^(-1)x=[xcos^(-1)x-sqrt(1-x^2)]_0^(1/2)`
`=[1/2cos^(-1)1/2-sqrt(1-(1/2)^2)]-[0cos^(-1)0-sqrt(1-0^2)]`
`=[1/2*pi/3-sqrt(1-1/4)]-[-1]`
`=pi/6-sqrt(3)/2+1`
No comments:
Post a Comment