You need to use the following substitution `sin x = t,` such that:
`sin x= t => cos x dx = dt`
`int (cos x*dx)/(sin^2 x) = int (dt)/(t^2)`
`int (dt)/(t^2) = int t^(-2) dt`
Using the formula `int t^(n) dt = (t^(n+1))/(n+1) + c` , yields
`int t^(-2) dt = (t^(-2+1))/(-2+1) + c`
`int t^(-2) dt = -1/t + c`
Replacing back `sin x` for `t` yields:
`int (cos x*dx)/(sin^2 x) =- 1/(sin x) + c`
Hence, evaluating the indefinite integral, yields `int (cos x*dx)/(sin^2 x) =- 1/(sin x) + c.`
No comments:
Post a Comment