Friday, April 4, 2014

`int cos(x)/(sin^2(x)) dx` Evaluate the indefinite integral.

You need to use the following substitution `sin x = t,` such that:


`sin x= t => cos x dx = dt`


`int (cos x*dx)/(sin^2 x) = int (dt)/(t^2)`


`int (dt)/(t^2) = int t^(-2) dt`


Using the formula `int t^(n) dt = (t^(n+1))/(n+1) + c` , yields


`int t^(-2) dt = (t^(-2+1))/(-2+1) + c`


`int t^(-2) dt = -1/t + c`


Replacing back  `sin x` for `t` yields:


`int (cos x*dx)/(sin^2 x) =- 1/(sin x) + c`


Hence, evaluating the indefinite integral, yields `int (cos x*dx)/(sin^2 x) =- 1/(sin x) + c.`

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...