The denominator factors out as `x^3-1=(x-1)(x^2+x+1),` thus the general decomposition is
`(2x)/(x^3-1)=A/(x-1)+(Bx+C)/(x^2+x+1).`
To find A, B and C, multiply both sides by `x^3-1:`
`2x = A(x^2+x+1)+(Bx+C)(x-1),` or
`2x=x^2(A+B)+x(A+C-B)+(A-C),`
so
A+B=0, A+C-B=2 and A-C=0.
From this B=-A, C=A, A+C-B=A+A+A=3A=2, so A=2/3, B=-2/3, C=2/3.
Now check this:
`(2/3)*(1/(x-1)+(-x+1)/(x^2+x+1))=(2/3)*(x^2+x+1-x^2+2x-1)/(x^3-1)=`
`=(2/3)*(3x)/(x^3-1)=(2x)/(x^3-1),` which is correct.
No comments:
Post a Comment