Monday, December 29, 2014

`int sinh^2(x) cosh(x) dx` Evaluate the indefinite integral.

You need to evaluate the indefinite integral by using the substitution `sinh x = t` , such that:


`sinh x = t =>cosh x dx = dt `


`int sinh^2 x*cosh x dx = int t^2 dt`


Using the formula `int t^n dt = (t^(n+1))/(n+1)` yields:


`int t^2 dt = t^3/3 + c`


Replacing back `sinh x` for t yields:


`int sinh^2 x*cosh x dx = (sinh^3 x)/3 + c`


Hence, evaluating the indefinite integral, yields `int sinh^2 x*cosh x dx = (sinh^3 x)/3 + c.`

No comments:

Post a Comment