You need to evaluate the indefinite integral by performing the indicated substitution` u =x^3 + 1` , such that:
`u = x^3 + 1 => du = 3x^2 dx=> x^2dx = (du)/3`
`int x^2sqrt(x^3+1)dx = (1/3)*int sqrt u du`
Using the formula `int u^n du = (u^(n+1))/(n+1) + c` yields
`(1/3)*int sqrt u du = (1/3)(u^(1/2+1))/(1/2+1) + c`
`(1/3)*int sqrt u du = (2/9)(u^(3/2)) + c`
Replacing back `x^3 + 1 ` for u yields:
`int x^2sqrt(x^3+1)dx = (2/9)((x^3 + 1)^(3/2)) + c`
Hence, evaluating the indefinite integral yields `int x^2sqrt(x^3+1)dx = (2/9)(x^3 + 1)sqrt(x^3+1) + c`
No comments:
Post a Comment