Given `2(sqrt3+i)^10`
Let `z=(sqrt3+i)^10`
`r=sqrt[(sqrt3)^2+(1)^2]=sqrt(3+1)=sqrt4=2`
`theta=arctan(1/sqrt3)=pi/6`
DeMoivre's Theorem
`z^n=[r(costheta+isintheta)]^n=r^n(cosntheta+isinntheta)`
`z^10=[2(cos(pi/6)+isin(pi/6))]^10`
`z^10=2^10(cos10(pi/6)+isin10(pi/6))`
`z^10=1024[cos((5pi)/3+isin((5pi)/3)]`
`z^10=1024[1/2+(-sqrt3/2)i]`
`z^10=512-512sqrt3i`
`2z=2(512-512sqrt3i)=1024-1024sqrt3i`
No comments:
Post a Comment