`(x^2+x+2)/(x^2+2)^2`
Let`(x^2+x+2)/(x^2+2)^2=(Ax+B)/(x^2+2)+(Cx+D)/(x^2+2)^2`
`(x^2+x+2)/(x^2+2)^2=((Ax+B)(x^2+2)+Cx+D)/(x^2+2)^2`
`:.(x^2+x+2)=(Ax+B)(x^2+2)+Cx+D`
`x^2+x+2=Ax^3+2Ax+Bx^2+2B+Cx+D`
`x^2+x+2=Ax^3+Bx^2+(2A+C)x+2B+D`
Equating coefficients of like terms gives,
`A=0`
`B=1`
`2A+C=1`
`2B+D=2`
substituting the values of A and B in the above equations,
`2(0)+C=1`
`C=1`
`2(1)+D=2`
`2+D=2`
`D=2-2`
`D=0`
`:.(x^2+x+2)/(x^2+2)^2=1/(x^2+2)+x/(x^2+2)^2`
No comments:
Post a Comment