`int ln (root(3)(x)) dx`
To evaluate, apply integration by parts `int udv = uv - int vdu` .
So let
`u = ln (root(3)(x))=ln (x^(1/3))=1/3ln(x)`
and
`dv = dx`
Then, differentiate u and integrate dv.
`du = 1/3*1/x dx= 1/(3x) dx`
and
`v=intdx = x`
And, plug-in them to the formula. So the integral becomes:
`int ln (root(3)(x))dx`
`= 1/3ln (x) *x- int x * 1/(3x)dx`
`= 1/3xln(x) - int 1/3dx`
`=1/3xln(x) - 1/3x+C`
Therefore, `int ln (root(3)(x)) dx =1/3xln(x)- 1/3x + C` .
No comments:
Post a Comment