Tuesday, August 4, 2015

`int ln(root(3)(x)) dx` Evaluate the integral

`int ln (root(3)(x)) dx`


To evaluate, apply integration by parts  `int udv = uv - int vdu` .


So let


`u = ln (root(3)(x))=ln (x^(1/3))=1/3ln(x)`


and


`dv = dx`


Then, differentiate u and integrate dv.


`du = 1/3*1/x dx= 1/(3x) dx`


and


`v=intdx = x`


And, plug-in them to the formula. So the integral becomes:


`int ln (root(3)(x))dx`


`= 1/3ln (x) *x- int x * 1/(3x)dx`


`= 1/3xln(x) - int 1/3dx`


`=1/3xln(x) - 1/3x+C`



Therefore,  `int ln (root(3)(x)) dx =1/3xln(x)- 1/3x + C` .

No comments:

Post a Comment