`8+3i`
The trigonometric form of a complex number `z=x+yi` is
`z=r(cos theta + isin theta )`
where
`r= sqrt(x^2+y^2)`
`theta = tan^(-1) y/x`
Applying these formulas, the values of r and theta of z=8+3i are:
`r= sqrt(8^2+3^2)=sqrt(64+9)=sqrt73`
`theta = tan^(-1) 3/8=20.56`
Plug-in them to the trigonometric form.
`z=sqrt73(cos 20.56^o+isin20.56^o)`
Thus, the trigonometric form of `8+3i` is `sqrt73(cos20.56^o + isin20.56^o)` .
No comments:
Post a Comment