`(5-x)/(2x^2+x-1)`
`=(5-x)/(2x^2+2x-x-1)`
`=(5-x)/((2x(x+1)-1(x+1)))`
`=(5-x)/((2x-1)(x+1))`
Let `(5-x)/(2x^2+x-1)=A/(2x-1)+B/(x+1)`
`(5-x)/(2x^2+x-1)=(A(x+1)+B(2x-1))/((2x-1)(x+1))`
`(5-x)/(2x^2+x-1)=(Ax+A+2Bx-B)/((2x-1)(x+1))`
`(5-x)/(2x^2+x-1)=(x(A+2B)+A-B)/((2x-1)(x+1))`
`:.(5-x)=x(A+2B)+A-B`
`A+2B=-1`
`A-B=5`
solving the above two linear equations to get A and B ,
subtracting the second equation from the first equation,
`3B=-1-5`
`3B=-6`
`B=-6/3`
B=-2
Plug the value of A in second equation,
`A-(-2)=5`
`A+2=5`
`A=5-2`
A=3
`:.(5-x)/(2x^2+x-1)=3/(2x-1)-2/(x+1)`
No comments:
Post a Comment