Saturday, June 12, 2010

`int y/(e^(2y)) dy` Evaluate the integral

You need to use the substitution `-2y = u` , such that:


`-2y=  u => -2dy = du => dy= -(du)/(2)`


Replacing the variable, yields:


`int y*e^(-2y) dy = (1/4)int u*e^u du`


You need to use the integration by parts such that:


`int fdg = fg - int gdf`


`f = u => df = du`


`dg = e^u=> g = e^u`


`(1/4)int u*e^u du =(1/4)(u*e^u - int e^u du)`


`(1/4)int u*e^u du = (1/4)u*e^u - (1/4)e^u + c`


Replacing back the variable, yields:


`int y*e^(-2y) dy = (1/4)((-2y)*e^(-2y) - e^(-2y)) + c`


Hence, evaluating the integral, using substitution, then integration by parts, yields `int y*e^(-2y) dy = ((e^(-2y))/4)(-2y - 1) + c`

No comments:

Post a Comment