You need to use the substitution `-2y = u` , such that:
`-2y= u => -2dy = du => dy= -(du)/(2)`
Replacing the variable, yields:
`int y*e^(-2y) dy = (1/4)int u*e^u du`
You need to use the integration by parts such that:
`int fdg = fg - int gdf`
`f = u => df = du`
`dg = e^u=> g = e^u`
`(1/4)int u*e^u du =(1/4)(u*e^u - int e^u du)`
`(1/4)int u*e^u du = (1/4)u*e^u - (1/4)e^u + c`
Replacing back the variable, yields:
`int y*e^(-2y) dy = (1/4)((-2y)*e^(-2y) - e^(-2y)) + c`
Hence, evaluating the integral, using substitution, then integration by parts, yields `int y*e^(-2y) dy = ((e^(-2y))/4)(-2y - 1) + c`
No comments:
Post a Comment