Friday, June 11, 2010

`x - 3z = -2, 3x + y - 2z = 5, 2x + 2y + z = 4` Use matricies to solve the system of equations (if possible). Use Gauss-Jordan elimination.

`x-3z=-2`


`3x+y-2z=5`


`2x+2y+z=4`


The equations can be written as


`[[1,0,-3,|-2],[3,1,-2,|5],[2,2,1,|4]]`


R2 `->` (R1+R3)-R2


`[[1,0,-3,|-2],[0,1,0,|-3],[2,2,1,|4]]`


R3 `->` (R3-2R2)


`[[1,0,-3,|-2],[0,1,0,|-3],[2,0,1,|10]]`


R1`->` (2R1-R3)


`[[0,0,-7,|-14],[0,1,0,|-3],[2,0,1,|10]]`


R3 `->` (7R3+R1)


`[[0,0,-7,|-14],[0,1,0,|-3],[14,0,0,|56]]`


`-7z=-14`


`z=(-14)/(-7)=2`


`y=-3`


`14x=56`


`x=56/14=4`


Solutions of the equation are x=4,y=-3,z=2

No comments:

Post a Comment