You need to use the following substitution `3t + 2=u` , such that:
`3t + 2=u=>3dt= du => dt = (du)/3`
`int (3t + 2)^(2.4) dt = (1/3)*int u^2.4 dt`
`(1/3)*int u^2.4 dt = (1/3)*(u^(2.4+1))/(2.4+1) + c`
Replacing back `3t + 2` for u yields:
`int (3t + 2)^(2.4) dt =(1/3)*((3t+2)^(3.4))/(3.4) + c`
Hence, evaluating the indefinite integral, yields `int (3t + 2)^(2.4) dt =(1/3)*((3t+2)^(3.4))/(3.4) + c`
No comments:
Post a Comment