Given `int_(1/6)^(1/2)csc(pit)cot(pit)dt`
Integrate using the Substitution Rule.
Let `u=pit`
`(du)/dt=pi`
`dt=(du)/pi`
`=int_(1/6)^(1/2)csc(u)cot(u)*(du)/pi`
`=1/piint_(1/6)^(1/2)csc(u)cot(u)du`
`=1/pi*[-csc(u)]` Evaluated from t=1/6 to t=1/2
`=-1/picsc(u)` Evaluated from t=1/6 to t=1/2
Right now the limits of integration are in terms of t. Change the limits of integration to terms of u.
Since `u=pit`
When `t=1/6` , `u=pi/6`
When `t=1/2` , `u=pi/2`
`=-1/picsc(u)` Evaluated from `u=pi/6` to `u=pi/2`
`=1/(-pi)[csc(pi/2)-csc(pi/6)]`
`=1/-pi[1-2] `
`=1/-pi[-1]`
`=1/pi`
No comments:
Post a Comment