Saturday, August 24, 2013

`int_(1/6)^(1/2) csc(pi t) cot(pi t) dt` Evaluate the definite integral.

Given `int_(1/6)^(1/2)csc(pit)cot(pit)dt`


Integrate using the Substitution Rule.


Let `u=pit`


`(du)/dt=pi`


`dt=(du)/pi`



`=int_(1/6)^(1/2)csc(u)cot(u)*(du)/pi`


`=1/piint_(1/6)^(1/2)csc(u)cot(u)du`


`=1/pi*[-csc(u)]`  Evaluated from t=1/6 to t=1/2


`=-1/picsc(u)` Evaluated from t=1/6 to t=1/2



Right now the limits of integration are in terms of t. Change the limits of integration to terms of u. 


Since `u=pit`


When `t=1/6` , `u=pi/6`


When  `t=1/2` , `u=pi/2`


`=-1/picsc(u)`  Evaluated from `u=pi/6`  to `u=pi/2`


`=1/(-pi)[csc(pi/2)-csc(pi/6)]`


`=1/-pi[1-2] `


`=1/-pi[-1]`


`=1/pi` 

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...