`(2(1-cos^2x))/(1-sin^2x)`
To simplify this, apply the Pythagorean identity `sin^2x + cos^2x=1` .
`= (2*sin^2x)/(cos^2x)`
And, apply the formula `tan x = (sinx)/(cosx)` .
`= 2 * ((sinx)/(cosx))^2`
`=2*tan^2x`
`=2tan^2x`
Therefore, the simplified form is `(2(1-sin^2x))/(1-cos^2x)=2tan^2x` .
No comments:
Post a Comment