`intz^3e^zdz`
If f(x) and g(x) are differentiable functions, then
`intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx`
If we write f(x)=u and g'(x)=v, then
`intuvdx=uintvdx-int(u'intvdx)dx`
Using the above integration by parts,
Let `u=z^3 , u'=3z^2`
and let `v=e^z, v'=e^z`
`intz^3e^z=z^3inte^zdz-int(3z^2inte^zdz)dz`
`=z^3e^z-int(3z^2e^z)dz`
`=z^3e^z-3intz^2e^zdz`
again applying integration by parts,
`=z^3e^z-3(z^2inte^zdz-int(d/dz(z^2)inte^zdz)dz`
`=z^3e^z-3(z^2e^z-int(2ze^z)dz`
`=z^3e^z-3z^2e^z+6intze^zdz`
again applying integration by parts,
`=z^3e^z-3z^2e^z+6(zinte^zdz-int(d/dz(z)inte^zdz)dz)`
`=z^3e^z-3z^2e^z+6(ze^z-int(1*e^z)dz)`
`=z^3e^z-3z^2e^z+6(ze^z-e^z)`
adding constant to the solution,
`=z^3e^z-3z^2e^z+6ze^z-6e^z+C`
No comments:
Post a Comment