`(2x^2+x+8)/(x^2+4)^2`
Let`(2x^2+x+8)/(x^2+4)^2=(Ax+B)/(x^2+4)+(Cx+D)/(x^2+4)^2`
`(2x^2+x+8)/(x^2+4)^2=((Ax+B)(x^2+4)+Cx+D)/(x^2+4)^2`
`(2x^2+x+8)/(x^2+4)^2=(Ax^3+4Ax+Bx^2+4B+Cx+D)/(x^2+4)^2`
`:.(2x^2+x+8)=Ax^3+4Ax+Bx^2+4B+Cx+D`
`2x^2+x+8=Ax^3+Bx^2+(4A+C)x+4B+D`
Equating the coefficients the like terms,
`A=0`
`B=2`
`4A+C=1`
`4B+D=8`
Plug the value of the A and B in the above equations,
`4(0)+C=1`
`C=1`
`4(2)+D=8`
`8+D=8`
`D=8-8`
`D=0`
`:.(2x^2+x+8)/(x^2+4)^2=2/(x^2+4)+x/(x^2+4)^2`
Now let's check it algebraically,
RHS=`2/(x^2+4)+x/(x^2+4)^2`
`=(2(x^2+4)+x)/(x^2+4)^2`
`=(2x^2+8+x)/(x^2+4)^2`
`=(2x^2+x+8)/(x^2+4)^2`
=LHS
Hence it is verified.
No comments:
Post a Comment