`(x+1)/(x^2-x-6)`
Let's factorize the denominator,
`x^2-x-6=x^2-3x+2x-6`
`=x(x-3)+2(x-3)`
`=(x-3)(x+2)`
`:.(x+1)/(x^2-x-6)=(x+1)/((x-3)(x+2))`
Now let`(x+1)/(x^2-x-6)=A/(x-3)+B/(x+2)`
`(x+1)/(x^2-x-6)=(A(x+2)+B(x-3))/((x-3)(x+2))`
`(x+1)/(x^2-x-6)=(Ax+2A+Bx-3B)/((x-3)(x+2))`
`:.(x+1)=Ax+2A+Bx-3B`
`x+1=(A+B)x+2A-3B`
Equating the coefficients of the like terms,
`A+B=1`
`2A-3B=1`
Now let's solve the above two equations to get the values of A and B,
express B in terms of A from the first equation,
`B=1-A`
substitute the expression of B in the second equation,
`2A-3(1-A)=1`
`2A-3+3A=1`
`5A-3=1`
`5A=1+3`
`5A=4`
`A=4/5`
Plug the value of A in the first equation,
`4/5+B=1`
`B=1-4/5`
`B=1/5`
`:.(x+1)/(x^2-x-6)=4/(5(x-3))+1/(5(x+2))`
Now let's check the above result,
RHS=`4/(5(x-3))+1/(5(x+2))`
`=(4(x+2)+1(x-3))/(5(x-3)(x+2))`
`=(4x+8+x-3)/(5(x^2+2x-3x-6))`
`=(5x+5)/(5(x^2-x-6))`
`=(5(x+1))/(5(x^2-x-6))`
`=(x+1)/(x^2-x-6)`
= LHS
Hence it is verified.
No comments:
Post a Comment