`intsin^-1xdx`
If f(x) and g(x) are differentiable functions, then
`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`
If we write f(x)=u and g'(x)=v, then
`intuvdx=uintvdx-int(u'intvdx)dx`
Using the above method of integration by parts,
`intsin^-1xdx=sin^-1x*int1dx-int(d/dx(sin^-1x)int1dx)dx`
`=sin^-1x*x-int(1/sqrt(1-x^2)*x)dx`
`=xsin^-1x-intx/sqrt(1-x^2)dx`
Now evaluate using the method of substitution,
Substitute `t=1-x^2,=> dt=-2xdx`
`intx/sqrt(1-x^2)dx=intdt/(-2sqrt(t))`
`=-1/2intdt/sqrt(t)`
`=-1/2(t^(-1/2+1)/(-1/2+1))`
`=-1/2(t^(1/2)/(1/2))`
`=-t^(1/2)`
substitute back `t=1-x^2`
`=-(1-x^2)^(1/2)`
`intsin^-1xdx=xsin^-1x-(-(1-x^2)^(1/2))`
adding constant C to the solution,
`=xsin^-1x+sqrt(1-x^2)+C`
No comments:
Post a Comment