You need to evaluate the indefinite integral by performing the substitution `x^3 = t` , such that:
`x^3 = t => 3x^2dx = dt => x^2dx = (dt)/3`
`int x^2*e^(x^3) dx= (1/3)int e^t dt`
`(1/3)int e^t dt = (1/3)(e^t) + c`
Replacing back `x^3` for t yields:
`int x^2*e^(x^3) dx= (1/3)(e^(x^3)) + c`
Hence, evaluating the indefinite integral yields `int x^2*e^(x^3) dx= (1/3)(e^(x^3)) + c.`
No comments:
Post a Comment