To convert a complex number
to its trigonometric form
`z=r(cos theta + isintheta)`
the formulas needed are:
`r=sqrt(x^2+y^2)`
`theta = tan^(-1) y/x`
Applying these two formulas, the r and `theta` of
`z=1+i`
will be:
`r = sqrt(1^2+1^2) = sqrt2`
`theta = tan^(-1) (1/1)=tan^(-1) 1 = 45^o`
Plugging them to
`z=r(costheta+ isin theta)`
result to:
`z=sqrt2(cos45^o + isin45^o)`
Therefore, the trigonometric form of `1+i` is `sqrt2(cos45^o+isin45^o)` .
No comments:
Post a Comment