`int_0^1(x^2+1)e^-xdx`
Let's first evaluate the indefinite integral,using the method of integration by parts
`int(x^2+1)e^-xdx=(x^2+1)inte^-xdx-int(d/dx(x^2+1)inte^-xdx)dx`
`=(x^2+1)(-e^-x)-int(2x*(-e^-x))dx`
`=-(x^2+1)e^-x+2intxe^-xdx`
applying again integration by parts,
`=-(x^2+1)e^-x+2(x*inte^-xdx-int(d/dx(x)inte^-xdx)dx`
`=-(x^2+1)e^-x+2(x(-e^-x)-int(-e^-x)dx)`
`=-(x^2+1)e^-x+2(-xe^-x+inte^-xdx)`
`=-(x^2+1)e^-x+2(-xe^-x+(-e^-x))`
`=-(x^2+1)e^-x-2xe^-x-2e^-x`
`=-e^-x(x^2+1+2x+2)`
`=-e^-x(x^2+2x+3)`
adding a constant to the solution,
`=-e^-x(x^2+2x+3)+C`
Now evaluate the definite integral,
`int_0^1(x^2+1)e^-xdx=[-e^-x(x^2+2x+3)]_0^1`
`=[-e^-1(1^2+2*1+3)]-[-e^0(0^2+2*0+3)]`
`=[-e^-1(6)]-[-1*3]`
`=-6/e+3`
No comments:
Post a Comment