Thursday, June 4, 2015

`int_0^1 (x^2 + 1)e^(-x) dx` Evaluate the integral

`int_0^1(x^2+1)e^-xdx`


Let's first evaluate the indefinite integral,using the method of integration by parts


`int(x^2+1)e^-xdx=(x^2+1)inte^-xdx-int(d/dx(x^2+1)inte^-xdx)dx`


`=(x^2+1)(-e^-x)-int(2x*(-e^-x))dx`


`=-(x^2+1)e^-x+2intxe^-xdx`


applying again integration by parts,


`=-(x^2+1)e^-x+2(x*inte^-xdx-int(d/dx(x)inte^-xdx)dx`


`=-(x^2+1)e^-x+2(x(-e^-x)-int(-e^-x)dx)`


`=-(x^2+1)e^-x+2(-xe^-x+inte^-xdx)`


`=-(x^2+1)e^-x+2(-xe^-x+(-e^-x))`


`=-(x^2+1)e^-x-2xe^-x-2e^-x`


`=-e^-x(x^2+1+2x+2)`


`=-e^-x(x^2+2x+3)`


adding a constant to the solution,


`=-e^-x(x^2+2x+3)+C`


Now evaluate the definite integral,


`int_0^1(x^2+1)e^-xdx=[-e^-x(x^2+2x+3)]_0^1`


`=[-e^-1(1^2+2*1+3)]-[-e^0(0^2+2*0+3)]`


`=[-e^-1(6)]-[-1*3]`


`=-6/e+3`

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...