You need to use the following substitution `1 - e^u= t` , such that:
`1 - e^u= t=>-e^u du = dt => e^u du = -dt`
`int (e^u*du)/((1-e^u)^2) = -int (dt)/(t^2)`
`-int (dt)/(t^2) = 1/t + c`
Replacing back `1 - e^u ` for t yields:
`int (e^u*du)/((1-e^u)^2) = 1/(1 - e^u) + c`
Hence, evaluating the indefinite integral, yields `int (e^u*du)/((1-e^u)^2) = 1/(1 - e^u) + c.`
No comments:
Post a Comment