Tuesday, October 14, 2014

`int e^u/(1 - e^u)^2 du ` Evaluate the indefinite integral.

You need to use the following substitution  `1 - e^u= t` , such that:


`1 - e^u= t=>-e^u du = dt => e^u du = -dt`


`int (e^u*du)/((1-e^u)^2) = -int (dt)/(t^2)`


`-int (dt)/(t^2) = 1/t + c`


Replacing back `1 - e^u ` for t yields:


`int (e^u*du)/((1-e^u)^2) = 1/(1 - e^u) + c`


Hence, evaluating the indefinite integral, yields `int (e^u*du)/((1-e^u)^2) = 1/(1 - e^u) + c.`

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...