`intt^3e^(-t^2)dt`
Let `x=t^2`
`dx=2tdt`
`intt^3e^(-t^2)dt=intxe^(-x)dx/2`
`=1/2intxe^(-x)dx`
Now apply integration by parts,
If f(x) and g(x) are differentiable functions then,
`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`
If we write f(x)=u and g'(x)=v, then
`intuvdx=uintvdx-int((du)/dxintvdx)dx`
So, let's take u=x , then u'=1
and v=`e^-x`
then v'=`-e^-x`
`intxe^-xdx=x*int(e^-xdx)-int(1inte^-xdx)dx`
`=x(-e^-x)-int(-e^-x)dx`
`=-xe^-x+int(e^-x)dx`
`=-xe^-x+(-e^-x)`
`=-xe^-x-e^-x`
`:.intt^3e^(-t^2)dt=1/2(-xe^-x-e^-x)`
substitute back `x=t^2` and add a constant to the solution,
`intt^3e^(-t^2)dt=1/2(-t^2e^(-t^2)-e^(-t^2))+C`
` `
No comments:
Post a Comment