Wednesday, October 22, 2014

`int t^3 e^(-t^2) dt` First make a substitution and then use integration by parts to evaluate the integral

`intt^3e^(-t^2)dt`


Let `x=t^2`


`dx=2tdt`


`intt^3e^(-t^2)dt=intxe^(-x)dx/2`


`=1/2intxe^(-x)dx`


Now apply integration by parts,


If f(x) and g(x) are differentiable functions then,


`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int((du)/dxintvdx)dx`


So, let's take u=x , then u'=1


and v=`e^-x`


then v'=`-e^-x`


`intxe^-xdx=x*int(e^-xdx)-int(1inte^-xdx)dx`


`=x(-e^-x)-int(-e^-x)dx`


`=-xe^-x+int(e^-x)dx`


`=-xe^-x+(-e^-x)`


`=-xe^-x-e^-x`


`:.intt^3e^(-t^2)dt=1/2(-xe^-x-e^-x)`


substitute back `x=t^2` and add a constant to the solution,


`intt^3e^(-t^2)dt=1/2(-t^2e^(-t^2)-e^(-t^2))+C`



` `

No comments:

Post a Comment

How does author Elie Wiesel use symbolism to contribute to the meaning of Night?

In his book Night , Elie Wiesel uses symbolism throughout to enhance the text. First of all, the title itself is symbolic. The word "ni...